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PREFACE

Inis report is an adaptation of the dissertation of Erice ion
Brackburi submitted to the Department of Physics at The Lniversity of
renressee in partial fulfillment of the requirements of the dearee of
Ductur of Philasophy.

The wlteasonic harmonic generation technique for measuring

cosibinations of third-order elastic constants of cubic single crystals
vreviously has been Timited by the plane wave approximation to measurc-
ment ot samples whose cross sectional dimensions are = 1.5 cm. By
chbtaicing data with small transducers and considering the effects of
Jiffraction, tne ranae of samples measurable with the technique has

veen extended to samples of 5 mm on a side. This development has

qdade possihle measurament of single crystals unavailable in Jarger
aimensions.  The minimum length required for measurement depends on r
tne material and on the cross sectional dimensions; the current estimate
of the minimum Tength is -~ 4 mm, Diffraction corrections based on the
tirchhoff diffraction theory are presented and analyzed for hoth the
funagamental trequency comporient and the secend havmonic component of

the nltrasonic wave. The technique was used to measure combinations

o7 third-order elastic constants of small samples of Csfdf3 and KInF3.
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CHAPTER 1

INTRODUCTION

The general objective of the res=arch described here is to

measure combinations of third-order elastic constants of cubic sinale
crystals. In the macroscopic theory of elasticity, the strain eneray
density of the crystal can be expressed as a power series expansion

in terms of the elements of the strain tensor. The coefficients of thne
second-order terms, multiplied by (2!}, are called second-order elastic
constants: the third-order elastic constants ove the coefficients of the
third-order terms, multiplied by (3!).

In the microscopic theory, the potential energy of the crystal
can he expressed as a Taylor series in terms of the displacements of the
atoms from their equilibrium positions. The coefficients in this series
are called coupling parameters.

Pfleiderer (1962) and Coldwell-Horsfall (1963) expnressed the
second- and third-order couplina parameters for face-centered cubic
crystals in terms of the second- and third-order elastic constants,
assuming nearest neighbor interactions only. Coldwell-Horsfall (1963}
nresented similar relations for body-centered cubic crystals, assuming
nearest and next-nearest neighbor interactions, and examined the case
of central forces for both lattice types. Measurements of third-order
elastic constants can therefore give information about the interatomic

potential and forces between atoms.
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Several physical properties of solids result from, or depend upon,

the presence of the anharmonic terms in the strain enerqy density, Threse
properties include thermal expansion, heat conduction, the proportionality
of specific heat to temperature at temperatures above the characteristic

Debye temperature, the difference between isothermal and adiabatic elastic

constants, the dependence of second-order elastic constants on temperature

LT T,

and pressure, the interaction of two lattice waves, the attenuation of

high frequency sound waves, and waveform distortion of sound waves,

Several experimental techniques have been used to measure
third-order elastic constants of various solids. Measurement of the

dependence of the second-order elastic constants on hydrostatic pressure

gives combinations of third-order elastic constants but does not give
the complete set of these constants for a particular crystal structure.
Lazarus (1949) measured the pressure dependence of the second-order
elastic constants of single crystals of NaCl, KC1, CuZn, Cu, and Al,
Daniels and Smith (1958) made similar measurements on Cu, Ag, and Au.
Hearmon (1953), using equations obtained by Birch (1947), determined
what combinations of third-order elastic constants could be calculated
from Lazarus' data.

] Seeger and Buck {1960} and Melngailis, Maradudin, and Seeger

{1963) proposed an optical method of measuring third-order elastic v

constants of transparent crystals, and Parker, Kelly, and Bolef (1964)
! used the method to measure a third-order elastic constant (C]]]) of NaCl.

An initially sinusoidal finite amplitude ultrasonic wave propagatina

through the crystal distorts as it propagates, producing an asymmetric

diffraction pattern of monochromatic light directed perpendicular to the




direction of the sound wave, Combinations of third-order elastic

constants can be calculated from measurements of the light intensities

in the positive and negative diffraction orders,
Barker and Hollenbach (1970) developed an interesting technigue
tfor measuring third- and higher-order elastic constants. The sample
is struck by a projectile (and destroyed), and the resulting strain
is measured. Graham (1972) calculated elastic constants of fused silica
and sapphire from the data of Barker and Hollenbach (1970) and Graham
and Brooks (1971).
One of the most widely used methods of measuring third-order
elastic constants requires a measurement of the change in sound
velocity with uniaxial stress. The first determination of a complete
set of third-order elastic constants of isotropic materials was made
by Hughes and Kelly (1953) by measuring the change of ultrasonic
velocity with hydrostatic pressure and with uniaxial stress in poly-
styrene, iron, and pyrex glass. For the case of cubic crystals, Seeaer
and Buck (1960) obtained relations for the sound velocities in crystals
subjected to hydrostatic pressure and uniaxial stress, in terms of
second- and third-order elastic constants. Bateman, Mason, and
McSkimin (1961) then performed the measurements on the cubic crystal ,
germanium and obtained the first complete set of six third-order elastic 4

constants of a cubic crystal. Measurements followed by Drabble and

Gluyas (1963) on germanium, McSkimin and Andreatch (1964) on germanium
and silicon, Bogardus (1965) on germanium, magnesium oxide, and fused

silica, Chang (1965) on NaCl and KC1, and Thurston, McSkimin, and

Andreatch (1966) on quartz. The third-order elastic constants obtained




by this method are neither truly adiabatic nor isothermal because an
adiabatic wave propagates through an isothermally stressed medium
(Skove and Powell, 1967).

To apply the above technique to metals would reauire small stresses

because metal single crystals are easily deformed plastically. Hiki and

Granato (1966) used a sensitive method of measuring changes in velocity
with stress to measure complete sets of six third-order elastic constants
of prestressed single crystals of copper, silver, and gold.

Another approach to the determination of third-order elastic
constants involves the nonlinear phenomenon of the interaction of elastic

waves. Jones and Kobett (1963) performed classical calculations of the

scattering of two plane, intersecting, elastic waves in an anisotropic
medium. Their predicted scattered waves were experimentally detected
by Rollins (1963). Taylor and Rollins (1964) presented a quantum
mechanical treatment of the process, and their results were compared
with experimental measurements by Rollins, Taylor, and Todd (1964),.
Dunham and Huntington (1970) extended the theory of Taylor and Rollins
and performed an experimental study using samples of fused silica and
NaCTl.

In the present experiments, combinations of third-order elastic
constants are measured by an ultrasonic harmonic generation technique,
As an initially sinusoidal wave propagates through a solid, higher
harmonics are generated. This effect was observed and first reported

by Gedroits and Krasilnikov (1963) and Breazeale and Thompson (1963).

Breazeale and Ford (1965) established a relationship between the
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third-order elastic constants and the solution to the nonlinear equation
describing the propagation of an initially sinuscidal ultrasonic wave
along a pure Tongitudinal mode direction in a cubic crystal, By measuring
the amplitudes of the fundamental and second harmonic components, certain
combinations of third-order elastic constants can be calculated, as
described in Chapter II. A capacitive receiver capable of measuring
the absolute amplitudes of the fundamental and second harmonic components
of a plane wave was developed by Gauster and Breazeale (1966), and they
used the receiver to measure combinations of third-order elastic
constants of copper. Yost and Breazeale (1973) then used the capacitive
receiver for measurements on fused silica and combined their results
with the results of Dunham and Huntington (1970) to obtain the first
complete set of adiabatic third-order elastic constants,

The harmonic generation technique has been valuable for Tow
temperature measurements. Meeks and Arnold (1970) used the technique
to measure combinations of third-order elastic constants of strontium
titanate between 106 and 300°K, after Mackey and Arnold {1969) had
performed the measurements at room temperature. Peters, Breazeale, and
Pare (1968) developed a pneumatically controlled variable gap capacitive
receiver to be used for low temperature measurements, and they used it
to measure combinations of third-order elastic constants of copper down
to liquid nitrogen temperature (Peters, Breazeale, and Paré, 1970),
Similar measurements were performed on germanium (Yost and Breazeale,

1974). Bains and Breazeale (1976) then extended the technique through

Tiquid helium temperatiive and measured germanium, and temperature

- e

S ————




dependent measurements followed on four types of fused silica (Cantrell
and Breazeale, 1978), on copper (Yost, Cantrell, and Breazeale, 1980),
and on silicon (Philip and Breazeale, 1981).

In previous experiments, the measuremerits were performed on

single crystals that were large enough to allow the use of transducers

whose diameter to wavelength ratio permitted a plane wave approximation,
However, some single crystal samples are not available in large sizes,

To perform the measurements on smaller samples would require smaller

i diameter transducers. With a smaller diameter to wavelenath ratio the
plane wave approximation might no longer be valid and diffraction effects

would need to be considered. The objectives of the present research

were to develop the capability to perform the measurements on small
samples, to present a theoretical model consistent with the results, and
to use the method to make the measurements on a small sample,

A theory treating the generation of the second harmonic component
in the field of a plane circular piston radiating into a fluid has been
presented by Ingenito and Williams (1971). They solved a nonlinear
wave equation by means of first-order perturbation theory to obtain an
expression for the second harmonic as a function of position, in terms
of an integral of the square of the fundamental component, They
presented an expression for the value of the second harmonic intearated
over a circular area coaxial with the source and of the same diameter
as the source, and an expression for the second harmonic on the axis,

Rogers (1970) presented a theory on the same topic. Kunitsyn and

Rudenko (1978) treated the problem by solving the nonlinear equation




describing diffraction in the quasioptical approximation using the
method of successive approximations. Lockwood, Muir, and Blackstock
(1973) approached the problem by using weak-shock theory and restricted
their analysis to the far (Fraunhofer) field.

In the present experiments, in order to develop the capability to
perform the measurements on small samples, data were initially taken on
large samples of copper. Combinations of third-order elastic constants
of copper had been previously measured in the same Taboratory by the
harmonic generation technique, allowing an opportunity for comparison of
the results of the present experiments with previous results, The small
samples on which measurements were made were two members of the
perovskite family, CstF3 and KZnF3. Professor A, Zarembowitch and
others at the Université Pierre et Marie Curie, Paris, France, have been
studying structural phase transitions between the cubic and tetragonal
structure in fluoperovskites and attempting to establish a connection
between these instabilities and the nonlinear behavior of the materials.
The data obtained in the present experiments complement their data,
which is reported by Fischer (1979) and Fischer, Zarembowitch, and

Breazeale (1981).




CHAPTER I1I
THEORY OF ULTRASONIC NONLINEARITY IN SOLIDS

The theory of ultrasonic nonlinearity in solids can be treated
using classical continuum mechanics or quantum mechanics, A treatment
using continuum mechanics will be presented in this chapter. The
quantum mechanical approach gives identical results [cf. the tutorial
paper by Bajak and Breazeale (1980)]. 1In the classical treatment the
equations of motior are obtained from Lagranae's equatioans for continuous
media. The potential energy term in the Lagranaian density is the strain
energy density which is written in terms of the Lagrangian strains, The
resulting equations of motion are simplified and solved. The solution
shows that combinations of third-order elastic constants can be obtained

by measurement of displacement amplitudes.
I. DEFINITION OF LAGRANGIAN STRAINS

Let the position of a point in an unstrained solid be given by
the coordinates (a], a5, a3). When the solid is strained, let the
position of the point be given by the coordinates (x], Xos x3). The

components of the displacement are
ug = oxgo-oay . {(11. 1)

The subscript i can have the value 1, 2, or 3.
The square of the distance between two points that are close

together is
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dr? = da,? (11.2)
using the Einstein summation convention of summing over repeated
indices. The square of the distance between the two points in the
strained state is
AU,
.2 2 _ 2 _ i 2
de-© = dxi = (da., + dui) = (da1 + 555 daJ)
Au 3. U
= da.l 1 _1_i
= da1 +2 5 daidaJ TWET daJdak (IT1.3)
J k
. 2 2 . .
Since di~ = dai , the above eauation is
U, LIV du, au
.2 2 _or)d (A, 73, Tk kK
de”” - de” = 2[2 (Ba. Yl t T, aa.)]daidaj
J 1 1 J
= Z”ijdaidaj . (I1.4)

The r are the elements of the Lagrangian strain tensor,
I1T. THE EQUATIONS OF MOTION

The equations of motion can be obtained from Lagrange's equations

for continuous media (Holt and Ford, 1967). Lagrange's equations are

LR R -
dt (’)).() + dak (3 \xi/ﬁa_kT) O . (II.S)
1

The Lagrangian density is
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E
;
|
l
:

10

2 _ o(n) (11.6)

where o is the unstrained mass density and ¢(n) is the strain energy per
unit unstrained volume. The properties of the medium enter the equations

of motion through the strain energy density ¢(n).
I11. THE ELASTIC CONSTANTS

The strain energy density can be written as a power series
expansion about the state of zero strain in terms of the Lagrangian

strains:
o(n) = bg t 0yt by ey L (11.7)

The first term, s represents the energy of the unstrained medium and
is constant; the second term, s is zero because the first derivative
of ¢ with respect to strain, evaluated at zero strain, is equal to zero,
The terms of order higher than three are neglected. The terms that

will be of interest in lLagranae's equations can be written, using the

Einstein summation convention,

1
27 CijkenijMke (11.8)

Py
N

and

. 1
"3 7 31 Cijklmn”ijnkznmn : (11.9)

The coefficients C.

iike appearing in the second-order terms are called
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the second-order elastic constants and the Cijkvmn are called the
third-order elastic constants.

The elastic constants can also be defined with a thermodynamic
approach if the physical process being cons-dered is purely adiabatic
or purely isothermal. Denoting the internal energy per unit volume
by U and the Helmholtz free energy per unit volume by F, the elastic
constants are defined (Brugger, 1964) by

. n
S ’T_,_q_‘L_J, (adiabatic, n > 2) (11.10)
JKY ... ( ”'ij\”kc "'}S
and
( n )
C s - ——————_ (isothermal, n > 2) , (11.11)
J PR { ]1j<ﬂk2 JT

where S denotes the entropy and T denotes the temperature,

The elastic constants defined by Ea. (I11.10) are called adiabatic
elastic constants, and the elastic constants defined by Eq. (I11.11) are
called isothermal elastic constants. Since F = U - TS, the distinction
does not apply at absolute zero.

The propagation of an ultrasonic wave through an unstrained
medium is an adiabatic process. To describe this process, the strain
energy density + appearing in the Lagrangian density is identified with
the internal enerqy density U. Thus, the gquantities measured in the

present experiments are combinations of adiabatic third-order elzstic

constants.
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In general there are 81 second-order and 729 third-order elastic
constants. The number of independent constants is lower if there are
lattice symmetries. For all cubic crystals there are three independent
second-order elastic constants, and for the most symmetrical classes of
cubic crystals there are six independent third-order elastic constants
(Birch, 1947). A1l of the samples measured in the present experiments
were cubic crystals having six independent third-order elastic constants.

It is conventional and convenient to contract the supscript

notation for the elastic constants (Voigt, 1928) as follows:
M »1,22+2,33-+3,23 -4,13 +5,12 -6 . :

Since the strain tensor elements " are symmetric, permutations of the
subscripts i are equivalent. The subscript notation for the strains
will not be contracted. Using Brugger's (1964) notation, the three
independent second-order elastic constants for cubic crystals are C]]’

C]Z’ and C44, and the six independent third-order elastic constants are
G110 G120 Cr230 Crag0 Crgee 34 Cgsee

IV. THE NONLINEAR WAVE EQUATION AND ITS SOLUTION

The nonlinear wave equation describing the propagation of an
ultrasonic wave through the sample can be obtained from Lagrange's
equations (II1.5). Identifying #(n), appearing in the Lagrangian

density (II.6), with the internal energy per unit vulume U, as pre-

viously discussed, the following equation can be obtained:
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] )
oX. = ag_ [y NEEL (11.12)

! k ik
This equation applies for any direction of propagation and any wave
polarization. It can be simplified by considering only pure mode
Tongitudinal plane waves. Pure longitudinal waves can propagate in the
{1001, [110], and [111] directions in a cubic crystal. The equation of
motion pertainina to a pure longitudinal plane wave propagating in one

of these three directions becomes (Breazeale and Ford, 1965)

2 2
G- MU du Aty
ol = K, N (3K, + K3) 7o = (11.13)

where K2 and K3 are linearly independent combinations of second-order
and third-order elastic constants, respectively, as shown in Table I1-1.
The perturbation solution (valid for distances much less than the

discontinuity distance) to Eq. (II1.13) is given by Breazeale and Ford

(1965) for a sinusoidal driver located at a = O by

3K2 + K3
u = A1 sin(ka - ut) - (T)

2,2

A,k%a cos 2(ka - wt) + ... ,

1
(11.14)

where
A] is the displacement amplitude of the fundamental frequency
component at a = 0,
k 1is the wavenumber,
a 1is the distance of propaaation,

s is the anqular frequency,

t s time.




Table II-1. K2 and K3 for the Principal Directions in a Cubic Crystal

Direction 2 3
[100] C1] C]]]
C,q + Cqy + 2C C + 3C + 12C
11 12 44 111 112 166
[110] 5 7

Cyq + 2Cy, + 4C
[111] L ;2 4 ]g (Cypq * 60y + 1204

+ 246166 + 2C123 + ]6C456)
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The first term in the solution is the component havina the fundamental
frequency; the second term is the component having the second harmonic
frequency. The solution also contains higher harmonic terms which
have been neglected. The amplitude of the second harmonic component,
denoted by A2, is given by

3K2 + K3)

2,2
8K2 A.%k"a , (11.15)

A, = -{
and is seen to be proportional to the sauare of the fundamental
amplitude, the square of the frequency, the propacation distance, and
a term containing the combinations of elastic constants. By measuring
the displacement amplitudes of the fundamental and second harmonic
components and knowing the value of K2, the combinations of third-order

elastic constants K3 can be calculated. The value of Ky for a given

direction is given by

K, = ovl (11.16)

where v is the velocity of sound in the given direction. Rearranging

Eq. (I1.15) gives

Lo

K3 = “K2(3 + -K2(3 + 6) . (11.17)

The second term in the parentheses in Eq. (II.17) is denoted by =:
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(11.18)

The quantity R is equal to the negative of the ratio of the coefficient

rvra—

in the nonlinear term in the wave equation (II1.13) to the coefficient
in the linear term; - is therefore called the nonlinearity parameter. f
(This definition of the nonlinearity parameter B is consistent with the
corresponding definition for liguids and gases. The expression given

for 8 is a factor of three greater than the expression used for £ by

Cantrell (1976).)

The theory presented in this chapter has led to an equation that
shows that the nonlinearity parameter g8 (and K3) can be determined from
a measurement of the amplitudes of the first and second harmonic com-
ponents of a plane wave. Two of the objectives of the present research
are to develop the capability to measure these quantities using waves
that are not plane, and to form a better understanding of the diffraction

of an ultrasonic wave propagating in a nonlinear medium. A comparison

of the values to be measured with accepted values of ¢ and K3 serves as a

basis for formulating an approach to nonlinear diffraction theory.
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CHAPTER I11
APPARATUS, PROCEDURE, AND SAMPLES
I. EXPERIMENTAL CONSIDERATIONS

f i The method of measuring the displacement amplitudes of the
fundamental and second harmonic components of a plane ultrasonic wave
propagating through a solid sample will be discussed in this chapter.

For the experiments to be described, as well as for previous experi-

R T e W,

ments {Gauster (1966) and others], a fundamental frequency of 30 MHz
was selected for the following reasons. The amplitude of the second
harmonic component is proportional to the square of the fundamental
frequency; therefore the higher the frequency, the better the signal

to noise ratio. However, attenuation and the effects of nonparallelism
of the surfaces of the sample also increase with increasing frequency.

A frequency of 30 MHz was found to be a good compromise. Also, the

diameters of the transducers used in previous measurements were large
enough (1.27 cm) that the diameter to wavelength ratio using 30 MHz
was large enough to justify a plane wave approximation.

The ultrasonic wave was pulsed in order to avoid interference
effects. A pulse repetition rate of 60 pulses/second was used to
minimize heating of the sample.

In the theory of finite amplitude wave propagation the second
harmonic amplitude is related to the fundamental amplitude by a simple

integral power law only ir the 1imit of infinitesimal fundamental

17
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amplitude (Thurston and Shapiro, 1967). Therefore the initial
fundamental amplitudes were minimized to levels providing useful signal

to ncise ratios for the generated second harmonic components,
II. THE DETECTOR APPARATUS

The measurements of the displacement amplitudes were made using
the detector apparatus pictured in Figure III-1. A cross sectional view
of the apparatus is shown in Figure 111-2. An ultrasonic pulse is
transmitted into the sample from a piezoelectric x-cut quartz transducer
and causes the optically flat end of the sample to vibrate. An optically
flat electrode is located approximately ten microns below the end of the
sample and forms parallel plate capacitor with it, A dc bias voltaae
of the order of 150 volts is applied across this capacitor. When the
ultrasonic pulse impinges upon the end of the sample, the gap spacing
of the capacitor changes, and a current is produced. The fundamental
frequency signal and the second harmonic signal are separated electronically.
The displacement amplitudes A] and A2 are calculated by determining the

current and the initial gap spacing.

The initial gap spacing is measured with an impedance bridge. The

1 current is determined by measuring the voltage across a known impedance.
Since it is preferable to measure a continuous voltage rather than a puised
signal, a substitutional continuous signal is used which is adjusted to
produce the same output signal as that received using the pulsed ultra-

sonic wave.




Figure T11-1.
is shown.

The detector apparatus.

A 2.5 cn diameter cample
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Figure II11-2. Cross sectional view of the detector apparatus.
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IIT. CALIBRATION AND PROCEDURE

The circuit diagram used for calculating the amplitudes is shown
in Figure III-3. The detector circuit is represented by a Norton equiva-
lent circuit. The circuit elements and parameters are defined as follows.
CD is the quiescent capacitance of the detector,
CS is the stray capacitance of the detector,
L is the inductance of the wire leading from the banana jack to
the BNC connector (shown in Figure I1I11-2).
Z is the impedance of the resistor located in the base of the
apparatus, indicated in Fiqure III-2,
is the current generator of the Norton eauivalent circuit of the
detector,
GS is the substitutional signal current generator,
iD is the amplitude of the current produced by the ultrasonic
wave,
is is the amplitude of the substitutional current,
3 is a "switch" that is opened and closed by turnina on or off
the ultrasonic pulse,
52 is a "switch" that is opened and closed by disconnecting or
connecting a signal generator.
Peters (1668) showed that the Thévenin equivalent circuit of the

capacitive receiver is a voltage source of voltage amplitude

V= —= ), (I111.1)
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in series with a capacitor CD’ feeding the amplifier impedance. In
Eq. (III.1), A is the displacement amplitude of the ultrasonic wave
within the solid, Vb is the dc bias voltaqe applied across the capacitive
receiver, and S0 is the gap spacing of the quiescent capacitive receiver,
The amplitude of vibration of the free surface of the sample is twice the
amplitude within the sample because the incident and reflected waves add.
This was taken into account in obtaining Eq. (III.1).

The current amplitude iD produced by the capacitive detector is
related to the voltage amplitude V by

iD = Vulp (I11.2)
where » is the angular frequency of vibration. Combining Eqs. (III.1)
and (I11.2) gives

2AV, wC
- _ b0 (111.3)

' 5o
The rrtput from the substitutional source GS is adjusted to give the
same output from the amplifier as the output resultina from the ultra-
sonic pulse. Under this condition, iD is equal to is, and the displace-
ment amplitude A can be calculated from Eq. (III.3) by measuring ig.

The current iS is determined by measuring the voltage VS across

the current generator GS and measuring the impedance throuagh which iS

passes. The equation is




v
i = , (111.4)

S

Sz Gw(Cy + Cg) + g@‘:ljar]-]|

The quantity Z is the impedance of the resistor located between
the substitutional source and the capacitive detector, At the frequencies
used in these experiments, the impedance of the resistor is not purely
resistive and is a function of frequency. The impedance can be determined
by the following procedure. Refer to Figure III-4 which shows the circuit
used for the measurement of the impedance Z. The sample, detector assembly,
and bottom plate are removed from the apparatus, and 50 @ terminators are
connected to the two BNC connectors at the base of the apparatus. A cw
variable-frequency signal generator is connected to the terminator on the
side having the resistor. Probes A and B of a (Hewlett-Packard 840Q5A)
vector voltmeter are positioned at point 1, the phase angle between
the signals is zeroed, and the voltages are measured. Probe B is then
moved to point 2, leaving probe A at point 1. The signal generator
is adjusted to give the same channel A voltage as before, and the
channel B voltage and the phase angle are measured. The impedance Z

is calculated from the formula

Jé
13- gy -~ Vpo®
1+ Jul V828J¢

Z = [juC + R (111.5) ?

where C is the stray capacitance at point 2, including the probe tip
capacitance, R] is the resistance of the precision terminator measured

with an impedance bridge, VB] and VBZ are the voltages measured by
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probe B at points 1 and 2, respectively, and ¢ is the phase angle, The
other symbols were defined previously.

The quantities C, R], and L were measured. The value of L was
3.8 x 10'8 H; the value of R] for the particular terminator used was
49.74 . The value of the stray capacitance C depends on the confiqura-
tion during the voltage measurements; in the present measurement C was

measured to be 10.75 x 10712 F.

Measurements of the impedance Z were
performed at the five frequencies from 28.0 MHz to 32.0 MHz in increments
of 1.0 MHz and at the five frequencies from 56.0 MHz to 64,0 MHz in
increments of 2.0 MHz. A computer program was written which used the
Lagrange five point interpolation formula (Abramowitz and Stegun, 1964)
to calculate |Z| as a function of frequency from 28.00 MHz to 32,00 MHz
in increments of 0.01 MHz and from 56.00 MHz to 64.00 MHz in increments
of 0.02 MHz.

The magnitude of Z was about 11 ko at the fundamental frequency
and about 9 k2 at the second harmonic frequency. The quantity in

brackets in Eq. (I11.4) can be neglected compared to Z at the frequencies

used in these experiments. Therefore Eq. (III.4) can be approximated as

. VS
ls = m . (III.6)

N

Equating iD given by Eq. (II1.3) with ig given by Eq. (I11.6) gives an

equation for the displacement amplitude:

Ys5g
A =




T A —— s b e o 1 £ . i
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The quantity A2/A]2, which appears in the nonlinearity parameter &, can

be written
A Veo VowiCo|Zo 12
A Vsp Vi Gpld (111.8)
7 = (=%) <17 '
A Ve, 0tz

where the subscripts 1 and 2 refer to the fundamental and second harmonic,
respectively.

A block diagram of the experimental arrangement used for the
measurements of the displacement amplitudes is shown in Figure III-5. A
cw signal from a variable-freaquency oscillator (VFO) is separated into
pulses by a gated amplifier; the pulses pass through a 30 MHz bandrass
filter and drive the piezoelectric quartz transducer. The pulsed signal
from the capacitive receiver is sent through either a 30 MHz or 60 MHz
bandpass amplifier which isolates the signal to be measured, rectifies
the signal, and yields an output that is the envelope of the rectified
pulse. The VFO and gated amplifier are tuned to optimize the shape and
amplitude of this envelope. The output signal from the amplifier is
monitored with an oscilloscope and measured with a boxcar integrator, the
output of which is proportional to the time average of the input. There-
fore random noise is averaged to zero while the repetitive signal adds
to produce a measurable output voltage. Then the substitutional sianal
discussed previously is applied to the capacitive receiver and adjusted
by means of attenuators and an amplifier gain control to produce the same

output as that obtained from the ultrasonic pulse, as measured by the

boxcar integrator. To obtain the substitutional signal at the second

T SR T DR AT
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harmonic frequency, the signal at the fundamental frequency is doubled
by a ring bridge mixer and filtered with a 60 MHz bandpass filter. The
(RMS) voltage across the signal generator is measured with an rf volt-

meter to determine Vg-
IV. THE QUARTZ TRANSDUCERS AND RECEIVING ELECTRODES

To investigate the effects of smaller diameter transducers and
receiving electrodes on the amplitude measurements, several quartz
transducers and receiving electrodes cf various diameters were made.
The diameters used in the experiments are listed on p. 35. For each of
the ten electrodes of diameters 1.27-0.188 cm, a corresponding around
ring was made having inside diameter 0.1 inch (2.54 mm) greater than
the diameter of the electrode. The brass receiving electrodes and
ground rings were machined using standard techniques and hand lapped.
The quartz transducers were reduced to the desired diameter by grinding
the edge of a larger transducer (or a broken fragment if available)
with a high speed (~ 20,000 rpm) silicon carbide grinding wheel. See
Figure III-6. The transducer is secured to the end of a rod by attachina

to the rod the adhesive from a cellulose tape in a manner similar to that

described by Yost (1972, p. 36). (The polyethylene film is not
necessary.) The quartz crystal is then very carefully pressed onto the
end of the rod. Then the rod, whose end surface was machined to be

perpendicular to the rod's axis, is placed in a collet in a milling

machine. The grinding wheel is secured to the tabie of the milling
machine. The rod and cuartz crystal are slowly rotated by hand as the

wheel grinds the quartz. After each revolution of the aquartz crystal,




Rotate by Hand

=

Collet

Pod

Quartz Crystal
Grinding Wheel

Milling Machine Table

/

Direction of Translation
of Milling Machine Table y

Figure III-6. Diagram illustrating the procedure for qrinding
the quartz crystal transducers. f
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the grinding wheel is moved slightly into the quartz using the
translational motion of the table. This procedure is repeated until
the desired diameter is obtained. Care should be taken in removina the
quartz crystal from the rod. It may be necessary to dissolve the

adhesive using a solvent such as benzene.
V. THE SAMPLES

The samples on which measurements were made included [100] and
[111] copper samples, a sample of potassium zinc fluoride (KZnF3) and
a sample of cesium cadmium fluoride (CstF3), each of which had faces
perpendicular to the [100] and [110] directions, and a [111] CsCdFy
sample. (The [111] Cu sample was used in nonlinearity measurements
performed by Gauster (1966) and Peters (1968). Gauster and Peters also
reported measurements on a [100] Cu sample different from the one used
in the present experiments.) A1l of the samples are cubic crystals;
copper has the face-centered cubic structure, and CstF3 and KZnF3 have
the perovskite structure. The copper samples had been neutron irradiated
to pin the dislocations, which reduces nonlinear effects of the dis-
locations. The dimensions, shapes, and crystallograrhic directions are
shown in Figure III-7. The densities and the values of K2 are given in
Table III-1. The K2 values for copper were calculated using the second-

order elastic constants of Overton and Gaffnev (1955):

C11

(in units of 1012

= 1.684 Cip = 1.214 C
).

1
dynes/cm2
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S
d=2.58 | d = 2.54
¢ = 3,96 ‘ -f— 9 = 1,72
2 g
! l [100]
: (111]
| A. Cu [111] B. Cu [100]
!
f (1101
C
b a=1.203
Jo—od{ b = 1.039
(100 c=1.017
a
[170]
C. KZnF3
(100] a=1.170
| b = 1.388
o c =1.197
\ a = 1.093
~4—s [110] ¢ b = 0.419
b b ¢ = 0.623
a
Imperfection ‘
a
[111]
D. CsCdF, [100] and [110] E. CsCdFy [111]

‘ Figure ITI-7. Drawings of the samples. The dimensions are given
in centimeters,
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Table III-1. Sample Densities and K2 Values
Sample Density (103 kg/m3) Direction K, (1012 dynes/cm?)
Cu 8.95 [100] 1.684
[111] 2.376
CSCdF3 5.638 [100] 1.08
[110] 0.995
[111] 0.967
KZnF 4.02 [100] 1.345

3 [110] 1,317
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The surfaces at the transducer and receiver ends of each sample
were lapped by hand optically flat. The CstF3 and KZnF3 samples should
not be touched with bare hands; they were handled using laboratory
gloves. It is permissible, however, to lap these materials with an oil
slurry lapping compound. This should be done carefully because the
surfaces are easily scratched.

To provide a conducting surface at the transducer and receiver
ends of the CstF3 and KZnF3 samples, a layer of copper of the order of
1000 ; thick was evaporated onto the surfaces.

The quartz transducers were bonded to all samples with Nonaq
Stopcock Grease.

An imperfection of approximately ten millimeters in lenath exists

in the {{100] and [1101) CstF3 sample as indicated in Figure [11-7,
VI. THE SEQUENCE OF THE EXPERIMENTAL INVESTIGATION

The first step taken to investigate the effects of smaller
diameter transducers and receivers was to obtain data on the Cu [111]
sample using four different diameter transducers with a 0.636 cm
diameter receiving electrode. The diameters used for these data and
the other data mentioned in this section are listed in Table III-2.

Data were then obtained on the same sample using a 1.18 cm diameter
receiving electrode and three different diameter transducers. Next,
data were taken on the Cu [100] sample using the 0.636 cm diameter
receiving electrode and four different diameter transducers. Data were
then taken using transducers and receiving electrodes of equal diameter,

The measurements were made on the Cu [100] sample using ten diameters.
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Table III-2. Transducer and Receiver Diameters Used in the Experiments
Receiver Transducer
Length Diameter Diameter
Sample Direction (em) {em) {cm)
Cu [111] 3.96 0.636 1.27
0.540
0.370
0.195
1.18 1.27
0.540
0.370
[100] 1.72 0.636 1.27
0.562
0.370
0.189
1.27 1.27
1.14 1.15
1.00 1.01
0.889 0.89
0.764 (0.766
0.635 0.640
0.508 0.512
0.381 0.385
0.254 0.258
0.188 0.189
CstF3 [100] 0.508 0.512
0.381 0.385
1ie] 0.508 0.512
0.381 0.385
111 0.381 0.385
KZnF3 [100] 0.508 0.512
[110] 0.381 0,385




After determining a method for correcting the data for diffraction,

measurements on CstF3 and KZnF‘3 were performed.




CHAPTER 1V

PESULTS, DISCUSSION, AND THEORETICAL TREATMENT

OF DIFFRACTION

To perform the third-order elastic constant measurements on small
samples requires small diameter transducers and receivers. It was
anticipated that the waves emitted from the smaller transducers would

not satisfy the plane wave assumption, and the results of the measure-

ments would differ from results obtained with large diameter *ransducers.

In order to determine how the smaller transducers and receivers affect
the measurements, and to learn how to make a reliable determination of
third-order elastic constants from measurements made with small
diameters, data were taken as outlined in Chapter III, Section VI.
I. RESULTS OF THE MEASUREMENTS WITH UNEOUAL DIAMETER
TRANSDUCERS AND RECEIVING ELECTRODES

The results of the jnitial neasurements on the Cu [111] sample
using two different receiving electrode sizes and a range of transducer
sizes are plotted in Figures IV-1 and IV-2. The quantities V] and V2
are the voltmeter readings of the fundamental and second harmonic
voltages, respectively, and are equal to the root-mean-square values
of the input voltages. If a plane wave were incident over the full
face of the receiving electrode, according to Eq. (III.8) the quantity
V2/V]2 would be proportional to A2/A12 for a given bias voltaae, fre-

quency, and receiver diameter and gap spacing. Eq. (II.18) shows that

37
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Figure IV-1. V /V]2 versus transducer diameter for the 3.95 cm
Cu [111] sample using %he 0.636 cm diameter receivina electrode.
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the quantity AZ/A12 should be constant for a given substance for a given
frequency, sample length, and direction of propagation of the ultrasonic
wave. Figures IV-1 and IV-2 show that the measured values of V2/V]2
depend strongly on transducer diameter for a given receiver diameter,
S1ight differences in bias voltage, frequency, and gap spacing for the
data points on a given curve would not sianificantly alter the curves,
The results of the next set of measurements, on the Cu [100] sample of
length 1.721 cm, are shown in Fiqure IV-3. The curve, obtained using
a shorter sample and different direction of wave propagation, is flatter
than the two previously discussed curves but still indicates a
difference between the measurements with the smallest transducer and
with the larger transducers.

Measurements performed with 12.7 mm diameter transducers have
been shown to yield accepted values of the nonlinearity parameter 8, The
V2/V]2 values in Figures IV-1 through IV-3 tend to decrease smoothly with
transducer diameter and approach these accepted results. Therefore, curves
such as those in Figures IV-1 through IV-3 can be used as calibration
curves for obtaining the nonlinearity parameters for small samples.
A family of curves for different sample lenaths would be useful. To
obtain the nonlinearity parameter for a given sample measured with a
given diameter transducer, a correction factor would be obtained from
the selected calibration curve by comparing the value on the curve at 3

the given diameter with the value approached at the large-diameter end

of the curve.
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Fiqure 1V-3. V2/V]2 versus transducer diameter for the 1.72 cm
Cu [190] sample usina the 0.636 cm diameter receivina electrode.
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IT. RESULTS OF THE MEASUREMENTS WITH EQUAL DIAMETER
TRANSDUCERS AND RECEIVING ELECTRODES

One of the objectives of the present research is to develop a
theoretical model for the nonlinear diffraction problem that is
consistent with the results. The results reported in the previous
section are not optimum for a mathematical understanding of the problem,
It was decided to obtain data using transducers and receiving electrodes
of equal diameter. This would possibly facilitate the mathematical
treatment of the problem and might allow the utilization of existina
diffraction theory for that configuration.

Ten sets of data, using the diameters listed in Table I11-2,

p. 235, were taken on the 1.72 cm Cu [100] sample. For each of the ten
sets of data, a measurement was taken for ten different values of the
amplitude of the ultrasonic wave, with the exception of the measurements
made with the 1.0 cm diameter transducer and receiver, in which the
amplitude was varied through five values. Values of the fundamental
amplitude and the second harmonic amplitude were calculated for each
amplitude setting by assuming the wavefronts t-~ have been plane, with

no correction for diffraction. These values will be denoted by A]u

and A2u’ the subscript u meaning "uncorrected for diffraction." For

each of the ten data sets a graph of A2u versus Afukza was plotted.

T

The graphs for the largest and smallest diameters used, 1.27 cm and
0.189 cm, are shown in Fiqures IV-4 and 1V-5, respectively. The

graphs for the other eight data sets are similar. The stiaight line

represents a linear least squares fit to the data. Each graph verifies
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Fioure IV-4. A, versus Akaza for Cu [100] usina the 1.27 cm
diameter transducer and receivina electrode.
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Fiaure IV-5. Ap, versus Afukza for Cu [1007 usina the 0.189 cm

diameter transducer and receivina electrode.




the expected proportionality of the amplitudes of the second harmonic

component to the square of the amplitude of the fundamental component.
The straight lines do not pass through the origin. Bains (1974) has
attributed this type of result to residual noise. The present values
of A2u were corrected by subtracting the value of the A2u intercept,
calculated from a least squares linear regression formula.

The values of the nonlinearity parameter (= BAZU/AfukZa) could
have been calculated from the slopes of the lines in these graphs.
However, Yost (1972) pointed out that a different method has the
advantages of allowing measurements with good signal-to-noise ratios
and vielding a value which satisfies the assumption of infinitesimal
amplitude waves. In this method, the values of AZ/A12 (or #) calcu-
lated for each data point are plotted as a function of A]. A curve
drawn through these data points is extrapolated to A] = 0, and the
value at this point is used for the nonlinearity parameter g. This
method has been particularly advantageous to previous experimenters
because their data at higher values of A] differed significantly from
the data at lower values. However, the graphs of the calculated values

of B, versus A,  for the present experiments, examples of which for the

Tu
1.27 ¢m and 0.189 cm diameter transducers and receivers are given in
Figures [V-6 and IV-7, respectively, do not show a trend in the data as
a function of A]u' Therefore, for each data set the nonlinearity

parameter Bu was taken to be the average of the individual values.

These values for the nonlinearity parameter, which were calculated

with no correction for diffraction, are plotted as a function of
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Fiaure IV-6. g, versus Ay, for Cu [100] usina the 1.27 cm
diameter transducer and receiving electrode.
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transducer and receiver diameter in Figure IV-8 and are listed on

p. 53. (There was an experimental problem in obtaining the data with

the 0.76 cm diameter transducer and receiver, and these data will not

be included in the analysis.) These values of the nonlinearity parameter
which were obtained using equal diameter transducers and receivers are
more consistent as a function of transducer diameter than were the

values obtained by varying the transducer diameter while keeping the
receiver diameter fixed. However, these 8, values still are not constant

as a function of diameter.
IIT. THE DIFFRACTION CORRECTION

The effects of diffraction will now be considered. In Chapter II
a theory was presented that enables one to calculate 3 and K3 from
amplitude measurements of a plane wave field described by nonlinear
acoustics. It is desired to be able to determine 8 and K3 for small
samples requiring small diameter transducers that emit waves that are
not plane, and to obtain a better understanding of the diffraction of
this nonlinear wave field. 1In the experiments, a circular transducer
oscillating at a particular frequency emits a wave into the medium.
As the wave propagates, higher harmonic components are aenerated. (In
the present study only the fundamental and second harmonic components
are used in the calculations.) For a plane wave, the second harmonic
component depends on the amplitude of the fundamental component, the

frequency, and the distance of propagation as stated in Chapter II,

For a wave that is not plane, it is presumed that the second harmonic
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Fiaure IV-8. 8, versus transducer diameter for Cu [100].
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also depends on these factors, but it is not known a priori what the
dependence is or how to describe the diffracted nonlinear field. The
diffraction correction that allows a determination of g8 and K3 is the
subject of this section.

E The diffraction of the fundamental component will be considered

first, and the second harmonic component will be treated later. By

e
'

neglecting the loss of eneray of the fundamental component to the
second harmonic, the diffraction of the fundamental component can be
treated by linear acoustics theory. The theory to be applied to the
fundamental component was obtained for a homogeneous fluid medium,

Analysis of data obtained with an anisotropic solid medium by utilizing

a diffraction theory applicable to a fluid medium is not unprecedented;
cf. Seki, Granato, and Truell (1956). [Papadakis (cf. Mason and
Thurston, 1975) extended the approach used by Seki et al. to application
to anisotropic solids for the linear diffraction problem.]

It is assumed that the field produced by the circular transducer
in the present experiments js the same as the field produced by a
plane circular piston source, set in an infinite riaid baffle and
oscillating at the fundamental frequency. The diffraction correction
‘ integral is defined as the integral of the field from the piston source
| over the surface of a circular area of diameter equal to that of the
source and coaxial with the source, divided by the intearal over the
same area of a plane wave field considered to be produced by an
infinitely extended plane source oscillating with the same amplitude
and frequency as the piston. An approximate diffraction correction

integral can be obtained by integrating an approximate expression for

—_— e e S,

B
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the piston field given by Lommel (1886). This integral, called the

Lommel diffraction correction integral, denoted by DL’ has been

evaluated numerically or graphically by several authors. Roaers and

Van Buren {1974) evaluated the integral analytically and obtained a
simple closed-form expression for it, valid at all distances from the
source provided that (kR)'/Z >> 1. Their result for the magnitude of

DL is

o, | = ([eos(2n/s) - dg(2n/s)1% + [sin(2n/s) - 3y (2n/s)1%1/2
(Iv.1)
where

JO = the zero order Bessel function,

Jy = the first order Bessel function,

s = 2nz/kR% = 2/(R%/2),

z = the distance from the source plane to the field plane,
k = the wavenumber,

R = radius of the piston,

A = wavelength.

This expression for IDL! was used for correcting the data for
the diffraction of the fundamental component, For each data set the
value of s was calculated and IDLI] was computed, the subscript 1
referring to the fundamental frequency component. Each nonlinearity ;

parameter £, was corrected by multiplying it by the square of lDL!]

since A]2 appears in the denominator of the expression for 8. The

corrected values are given by




\ _ 2
b -l = lDL‘] B . (IV.Z)

C, u

The resulting values are denoted by Bc,]’ the subscript ¢ meaning
"corrected" and the subscript 1 meaning that it was the fundamental com-
ponent that was corrected for diffraction. The values of the quantities
used in the calculations and the corrected values of the nonlinearity
parameters are given in Table IV-1, in which the subscript 1 indicates
that the value refers to the fundamental component. The corrected
values of the nonlinearity parameters are plotted as a function of
transducer diameter in Fiqure IV-9.

By examining Figure IV~9 it is seen that for the first time in
this study the results are consistent as a function of transducer
diameter. A measure of the consistency is the percent deviation of
the corrected nonlinearity parameters from the mean, which is tabulated
in Table IV-1. The mean value, EE,], is 5.536.

This mean value of the corrected nonlinearity parameter values
can be used to calculate K3 by inserting §£,1 into Eq. (II.17)., The
result is K3 =(-14.4 + 0.3) x]O]2 dynes/cmz. Gauster and Breazeale
(1968), using a transducer having a diameter large enough that a
diffraction correction was not considered necessary, obtained the value

12 dynes/cmz, and Peters (1968) obtained

K3 -(-14.3 + 0.44) x10
K3 =(-13.9 + 0.2) xlO]2 dynes/cmz. [Gauster and Breazeale performed
the calculations using the second-order elastic constants given by Hiki

and Granato (1966); Peters' results and the present results were calcu-

lated using the constants given by Overton and Gaffney (1955).] There

S




Table IV-1. Values of the Nonlinearity Parameter Corrected for
Diffraction of the Fundamental Component and Ouantities
Used in the Calculation*
Percent
Transducer 2 Deviation
Diameter S |DL| IDL| 8 8 From the
E (cm) 1 1 1 u c,l Mean
k 1.27 0.0610 0.946 0.894 6,134 + 0.039 5.484 + 0,035 1
i 1.15 0.0747 0.941 0.885 6.336 + 0.057 5.607 + 0.050 1
E 1.01 0.0954 0.933 0.871 6.733 + 0.171 5.864 + 0.149 6
’ 0.891 0.1236 0.924 0.854 6.269 + 0,081 5.354 + 0.069 3
0.640 0.2342 0.897 0.804 6.986 + 0,075 5.617 + 0.060 1
0.512 0.3736 0.870 0.756 7.469 + 0.102 5.646 + 0.077 2
0.385 0.6481 0.836 0.699 7.694 = 0,054 5.378 * 0.038 3
0.258 1.4434 0.748 0.559 9.461 + 0,140 5.289 + 0,078 4
0.189 2.6871 0.753 0.567 0.851 + 0,081 .585 + 0.046 1
*Fach uncertainty given is one standard deviation using (N-1)

weighting.




c,1

L 1 1 | 1 1 i 1 i 1 1 ) i _

0 0.2 0.4 0.6 0.8 1.0 1.2
Transducer Diameter {(cm)

Figure IV-9. e. y versus transducer diameter for Cu [1n0],
straight Tine represents the mean value & ; = 5.536.
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is very good agreement between the results of the present measurements
and the previous results.

By using transducers and receivers of equal diameter and
correcting the data for diffraction of the fundamental field by using
the Lommel diffraction correction integral, resuits were obtained that
were consistent as a function of diameter and agreed with previous
measurements.

This conclusion is encouraging; however, no correction for
diffraction of the second harmonic component has been applied, A
model for the diffraction of the second harmonic field allowing a
diffraction correction to be calculated will now be proposed.
Essentially, the Kirchhoff diffraction theory has been applied to the
fundamental component. Therefore, the initial wave field can be con-
sidered to be composed of spherical Huyghens wavelets of fundamental
frequency emitted from elements over the surface of the source. Each
spherical wavelel generates a second harmonic component, By symmetry,
the generated second harmonic wavelets must also be spherical. The
amplitude of the second harmonic wavelets depends on some function of
distance. An integrated value over the receiver of this second har-
monic field is measured, and from this measurement the second harmonic

plane wave amplitude, which will be denoted by A, , must be determined,

2pw
However, the Kirchhoff diffraction theory is valid for a field obeying
the linear wave equation, so it cannot be applied directly to the
generated second harmonic field.

A field that does allow determination of the second harmonic

plane wave amplitude from a measurement over the receiver would be a

——

{
4
!
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plane wave having amplitude A and frequency equal to the second

2pw
harmonic frequency, obeying the linear wave equation, passing through

an aperture of diameter equal to that of the transducer. For this
linear field the measured value over the receiver could be corrected

by the Lommel diffraction correction to calculate A2pw' If it can be
shown that the measured value over the receiver of the second harmonic
field in the actual physical case is nearly the same as the measured
value over the receiver for the linear wave, then the measured value can
be corrected by the Lommel diffraction correction to obtain the second
harmonic plane wave amplitude A2pw'

The value measured at the receiver depends on the phase
relationships of the second harmonic spherical wavelets and the ampli-
tudes of the wavelets. For both the physical case and the linear wave
the individual wavelets are spherical, and the frequencies of the wave-
lets are the same in the two cases. Therefore the phase relationships
are the same.

For the linear wave the amplitude of the spherical wavelets is

(A, _/r), r being the distance from the source element. In the

2pw
physical case the amplitude of the wavelets is some function of r,
divided by r. Since all the spherical wavelets reaching the receiver
travel about the same distance, the difference in amplitude between
different wavelets due to second harmonic generation is small., There-
fore the amplitude of the wavelets, at the position of the receiver,

can be approximated by a constant divided by r, This constant is equal

to A2pw‘ and the amplitude of the wavelets is Azpw/r. because that is
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the amplitude the spherical wavelets of an infinitely extended plane
wave would have in order to produce a plane wave of amplitude A2pw‘
Thus the amplitudes of the wavelets for the physical case and the
linear wave are nearly the same.

The values of the nonlinearity parameter obtained by correcting
for diffraction both the fundamental and second harmonic components

are denoted by Bc,l,Z:

2
8 = 01178, _ Fen (1v.3)

The values of B. 1.p are listed in Table IV-2 along with the values of
Sy and )DL)Z, the subscript 2 referrina to the second harmonic compo-

nent, and the g values are plotted as a function of transducer

¢,1,2
diameter in Figure IV-10. It is seen from the graph and the last column
of Table IV-2, the percent deviation from the mean, that the values are
reasonably consistent as a function of transducer diameter, except that
the value obtained with the smallest (0.189 cm) diameter transducer is
somewhat higher than the others. The mean of these corrected values,
6.159, is about 11% higher than the mean of the values that were
corrected for diffraction of the fundamental only. Using this mean value |
of Rc,1,2 to calculate K5, the result is Ky= (-15.4 + 0.8) x 10 es.cmz.

The results obtained by correcting for diffraction of only the

fundamental component were discussed earlier in this section, Those
results were consistent as a function of transducer diameter and produced

a value of K3 which agreed very well with previous, accepted results,
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Table IV-2. Values of the Nonlinearity Parameter Corrected for
Diffraction of Both the Fundamental and Second Harmonic
Components and Quantities Used in the Calculation*
Percent
Transducer Deviation
Diameter s !DL] 6 From the
(cm) 2 2 c,1,2 Mean
1.27 0.0305 0.962 .701 + 0,036 7
1.15 0.0374 0.958 .853 + 0.052 5
1.01 0.0477 0.952 .160 + 0.156 0
0.891 0.0618 0.945 .666 + 0.073 8
0.640 0.1171 0.926 .066 + 0,065 2
0.512 0.1868 0.907 .225 + 0.085 1
0.385 0.3240 0.879 .119 + 0.043 ]
0.258 0.7217 0.835 .334 + 0,093 3
0.189 1.3436 0.764 2311 + 0.060 19

*Each uncertainty given is one standard deviation using (N-1)
weighting.
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Fiqure IV-10. .y » versus transducer diameter for Cu [100].
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This indicated that a correction obtained by also considering the
diffraction of the second harmonic component should be small and the
corrected results should be consistent as a function of transducer
diameter. The proposed model for the diffraction of the second
harmonic gives results which meet both of these desired conditions.
The method in which only the fundamental component was corrected is
considered to be the more dependable of the two correction methods,

It is seen in Figure IV-10 that, although the 8c,1,2 values are
reasonably consistent as a function of diameter, the values appear to
approach the mean value obtained with the previous correction,

EC,] = 5.536, as the diameter increases., This trend tends to support
the use of the correction of only the fundamental, and it indicates
that the two correction methods are in good agreement for the larger

diameters. The trend suggests that the theory that was used to obtain

the Bc,],Z values may be slightly less applicable for the smaller
diameters than for the larger diameters. Also, since the values of
Bc,],z for the smaller diameters are larger than the corresponding
values of Bc,1’ which agreed very well with accepted results, the

second correction may be a slight overcorrection,
IV. RESULTS OF THE MEASUREMENTS ON CsCdF, AND KZnF3

The samples of CstF3 and KZnF3, described in Chapter III, are
small enough that the data obtained on them reguire corrections for
diffraction. The data were taken and corrected in the same manner as |

the Cu [100] data. The values of A]U and A2u’ calculated with no
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correction for diffraction, are listed in Table IV-3 along with the
guantity (8A2u/A]2uk2 ). Plots of A2u versus Afukza are shown in Figures
IV-11 through IV-17. After correcting the A2u values by subtracting the
Azu-intercepts, the nonlinearity parameters were calculated and plotted
as a function of Fiu (Figures IV-18 through 1V-24). As with the copper
data, the uncorrected value of the nonlinearity parameter was taken to
be the mean of these calculated values. The data were then corrected for
diffraction of the fundamental component and for diffraction of both the
fundamental and second harmonic components, as was done for the copper
data. The pertinent quantities and results of the calculations for g and
K3 are listed in Table IV-4. The results of the measurements in the [100]
and [110] directions in CstF3 using two different diameter transducers
are in good agreement. Notice that the percent differences between the
values of K3 obtained by correcting only the fundamental for diffraction
(K3(1)) and the values obtained by correcting both the fundamental and
second harmonic (K3(]’2)) are all less than 9%. 1In Table IV-5, values
of combinations of third-order elastic constants are given, obtained
using the correction of the fundamental component only.

The values of 8 and Ky presented in Table IV-4, obtained using
the diffraction correction method discussed herein, are the values that
are being reported as a result of this research. It was indicated in
Section IV-1 that a possible approach to determining the nonlinearity
parameter of a small sample would be the use of a calibration curve,
For comparison with the results given in Table IV-4, the calibration

correction is discussed here. The data presented in Figure 1V-8 on

P. 49 is shown in Figure IV-25 with a smooth curve drawn through the
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Table IV-3. Z;lues of Ay s Ayys and (8 AZU/Afukza) for CsCdF, and
nF3
Sample .

T Fundamental Second Harmonic 8A
Direction, - . 2u
Transducer Amp11t#ge A]u Ampl]t*?e A2u A2 k2

Diameter (cm) (107" m) (107°° m) Tl
CsCdF 5, 1.493 0.891 11.998
’ 2.029 1.555 11.348
0.512 2.108 1.744 11.790
2.364 2.215 11.907
2.580 2.603 11.745
2.817 3.134 11.863
2.974 3.511 11.920
3.152 3.935 11.899
3.348 4,477 11.992
CsCdF, 1.883 1.596 13.008
[100] 2.043 1.853 12.83¢8
’ 2.216 2.188 12.884
0.385 2.376 2.505 12.829
2.575 2.978 12.978
2.709 3.324 13.N95
2.882 3.669 12.772
3.033 4.121 12.952
3.210 4.626 12.976
3.370 5.104 12.992
CsCdF 5, 1.914 0.838 7.528
[110] 2.109 1.017 7.525
’ 2.310 1.201 7.407
0.512 2.510 1.405 7.336
2.651 1.561 7.310
2.872 1.813 7.2324
3.012 2.041 7.402
3.153 2.246 7.433
3.313 2.462 7.377
3.534 2.774 7.300
CsCdF 5, 2.592 1.589 7.481
[110] 2.771 1.783 7.339
> 2.906 2.011 7.530
0.385 3.081 2.234 7.442
3.224 2.465 7.496
3.403 2.739 7.475
3.529 2.980 7.566

3.681 3.222

3.847 3.491

3.991 3.705
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Table IV-3 (continued)
sample, Fundamental Second Harmonic 8A
Direction, . : 2u
Transducer Amp11f?ge AMu Amp]1t$ge Ao A? K2
Diameter {cm) (10 m) (107°° m) 10 @
CstF3, 1.715 0.565 16.426
[111] 1.741 0.618 17.433
’ 1.802 0.650 17.124
0.385 1.857 0.686 17.012
1.907 0.738 17.343
1.967 0,752 16.619
2.013 0.802 16,937
KZnF3, 1.611 0.532 12.553
' [100] 1.715 Q.610 12.696
l ’ 1.833 0.697 12.700
0.512 2.003 0.838 12.786
2.147 0.955 12.688
2.344 1.112 12.397
2.475 1.252 12.529
2.618 1.393 12.449
2.749 1.550 12.560
2.919 1.730 12,432
KZnF3, 1.715 0.363 8.169
[110] 1.839 0.421 8.231
? 1.964 0.490 2.415
0.512 2.068 0.538 8.323
2.203 0.615 8.386
2.328 0.684 8.363
2.432 0.747 8,360
2.546 0.834 8.516
2.650 0.884 8,331
2.775 0.964 8.294
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Fioure IV-13. A, versus A%ukza for CsCdF3 [110] usina the
0.51 cm diameter transducer and receivinn electrode.
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Fiqure IV-23. 8, versus Ay, for KZnF3 [100] using the 0.51 cm
diameter transducer and receiving electrode.
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Table IV-5. Measured Values of Combinations of Third-Order Elastic
Constants of CsCdF3 and KZnF3 in Units of 1012 dyn/cm?
| Sample Cyp (Cypp * 4Cq66) (6C14q * Cyp3 * 8Cysg)
CSCdF3 -13.4 - 7.24 ~4¢.6
KZnF3 -16.8 -11.3
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data points. The data approach a value of the nonlinearity parameter
of approximately 5.5. The smooth curve can be used to approximate
a correction factor for data obtained using a transducer-receiver
pair of given diameter. The values on the smooth curve at 0.385 cm
and 0.512 cm, the diameters used for the measurements on CstF3 and
KZnF3, are 8.3 and ~7.8. The correction factor would be 5.5/8.3 = ,66
for the 0.385 cm diameter and 5.5/7.8 = .71 for the 0.512 cm diameter,
The correction factors obtained from the Lommel diffraction correction,
IDL}]2 in Table IV-4, range from 0.730 to 0.83¢ for the 0.385 cm
diameter and from 0.771 to 0.800 for the 0,512 cm diameter. The values
of Kq calculated from the calibration correction factors, listed in the
same order as that in Table IV-4, are -12.5, -12.5, -8.13, -7.85, -13.7,
-15.8, and -11.8, in units of 10]2 dynes/cm?. The correction factors
obtained from the calibration curve do not take into account the length
of the sample or the wavelength of a given frequency wave in the
material. These quantities are taken into account by the Lommel
diffraction correction.

V. ESTIMATE OF THE DIMENSIONS OF THE SMALLEST
MEASURABLE SAMPLE
It is useful to estimate the dimensions of the smallest sample
measurable by the present technique. The minimum dimension transverse
to the direction of wave propagation is approximately 5 mm; this allows
the sample walls to be sufficiently outside the ultrasonic beam and is
large encugh for measurement with the 0.9 cm transducer and receiver,

Equation (I11.15) shows that the amplitude of the second harmonic

w o e
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component in a plane wave is directly proportional to the length of the
sample and depends on the quantities K2 and K3; thus the sample must be
long enough to allow a measurable second harmonic to be generated, and
this minimum length will depend on the material being measured, It is

estimated that this minimum length would be typically of the order of

4 mm.

It may not be possible to perform the measurements on a sample
having both the minimum transverse dimension and minimum length given
above. Measurement of smaller amplitudes tends to require larger
diameter transducer-receiver sets. For example, the [111] CstF3 sample
of length 4.19 mm was measured with the 0,38 cm diameter transducer and
receiver, but data could not be obtained using the 0.19 cm or the

0.26 cm diameter transducer and receiver.
VI. ERROR ANALYSIS

The primary sources of systematic error are the measurement of
the substitutional signal voltage and the measurement of the impedance
of the resistor in the base of the capacitive detector housing as a
function of frequency. It is estimated that the systematic error for

the measurement of su is within £12%. After correction of Bu for

diffraction, the mean value EE 1 agreed very well with previous, accepted
results (see Section IV-III), and the largest deviation of any of the ﬁ

nine 2. ; values from EE ) was 6% (see Table IV-1, p. 53), Therefore

the error introduced into the determination of the nonlinearity

parameter by the dif7raction correction appears to be relatively small,
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since the error of the BC 1 values was well within the *+12% systematic

v

error in each case.

VII. SOME PROBLEMS ASSOCIATED WITH THE APPLICATION OF
DIFFRACTION THEORY TO THE PRESENT MEASUREMENTS

The nonlinear wave eguation (I1.13) that has been used to describe
the wave propagation is valid only for a pure longitudinal mode plane
wave. It was obtained from the general equation, (II,12), by assuming
that the only component of displacement, say Uys is along the pure mode
direction, so that Uy = ug = 0, and that Uy is a function only of aj
and t. However, in the diffraction problem the displacement also
includes the components Uy and Ugs and each displacement component is a
function of aps ay, ag, and t. Thus Eq. (II.12) contains many terms
in the general case which are not present when considering only pure
longitudinal plane waves. From Eq, (II.12) three long coupled equations
are obtained, one for each of the directions labelled 1, 2, 3 [see
Gauster (1966)]. An attempt to solve the general equations would be
complicated, and would involve nonpure mode propagation,

The previously discussed theory that was used for the diffraction

correction was developed assuming the medium to be a homogeneous fluid.

The measurements of third-order elastic constants are performed on

solid media. At the surface of the solid a measurement is made of j
displacement, a vector quantity. The measurement technique is sensitive .
only to the component of displacement normal to the surface, Thus when

the transducers are large enough that the waves can be considered plane,

the measured value accurately represents the displacement field, but
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when the waves can no longer be considered plane, only the longitudinal
component is measured. In contrast, the parameter measured for a fluid

medium would be a scalar such as pressure or velocity potential, Thus o

TR

the fluid theory treats the measurement of a scalar quantity instead
of a vector quantity.

The anisotropy of the solid also leads to problems. The wave
speed is a function of direction in an anisotropic material, and there-
fore the assumption of spherical Huyghens' wavelets is not strictly
valid. Also, since parts of the diffracted wave travel in nonpure mode
directions, there is coupling to transverse modes.

Despite the approximations that must be made to treat the effects
of diffraction on the nonlinearity measurements, it has been demon-
strated that meaningful measurements can be made using the technique
presented. The data obtained in the present experiments are presented
as a contribution to the solution of the general problem of the

diffraction of waves propagating in a nonlinear medium,
VIII. SUGGESTIONS FOR FURTHER WORK

A result of the present research was to extend the harmonic
generation technique for nonlinearity measurements to include measure-
ment of smaller samples than could be measured previously. Conseaquently,
future measurements can include a wider range of materials. The
previously existing harmonic generation technique is capable of per-
forming the nonlinearity measurements as a function of temperature down

to liquid helium temperature. The temperature dependent measurements

can be extended to include small samples by modifying part of the
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cryogenic apparatus and utilizing the diffraction correction, This work
has been bequn by Jaccb Philip.

Measurements in the [100] and [110] directions in KZnF3 are
reported here. To obtain a third combination of third-order elastic
constants a measurement in the [111] direction is needed,

A more rigorous mathematical treatment of the diffraction of

finite amplitude waves would be desirable. A tutorial paper by Bajak

and Breazeale (1980) presents a quantum mechanical approach to the same %
problem of plane wave harmonic generation that was treated classically }
in Chapter II. 1In the quantum mechanical theory, two phonons of the

fundamental frequency interact to produce a phonon of the second

harmonic frequency. In the paper there is given an expression for the

amplitude of the second harmonic component as a function of the deviation

of the direction of the second harmonic wave vector from the direction

of the wave vector composed of the sum of the two fundamental frequency

wave vectors. This suggests the possibility to correct for diffraction

of the second harmonic. A means of implementing the correction for the

present experimental configuration would involve resolving the funda-

mental field into an equivalent set of plane waves and determining the

amplitudes of the phonons generated by the many interactions of the

phonons in the fundamental field.
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APPENDIX

COMPUTER PROGRAM FOR THE CALCULATION OF THE MAGNITUDE OF
THE DIFFRACTION CORRECTION, IDLI, AS A FUNCTION OF S

The following computer program, DIFCOR.F10, and subroutine,
BES.F10, written in FORTRAN for use on the DECsystem-10 Operating
System, is used to calculate the magnitude of the diffraction
correction, IDL], as expressed in Eq. (IV.1), as a function of s,
As written, the value of s varies from 0.00 to 74.99 in increments

of 0.01. The program is adapted from that written by D. W. Fitting.

00100 REAL JO»J1

00200 . DIMENSION DIFCOR(7500)»RINDEX(750)

00300 DATA F1/3.1415926/

00400 OFEN(UNIT=2SFILE="UIFCOR.QUT’ sACCESS="SEROU
T’y ’

00500 X DEVICE='DSKE:’)

00600 DO 10 I=197499

00700 S=FLOAT(1)/100.

00800 ARG=2.%F1I/S

00900 CALL BES(ARG»JO»J1)

01000 10 DIFCOR(I)>= (SQRT((COS(ARG)-JOIXX2+(SIN(ARG)-J1
INK2))

01100 DIFCOR(0)=1,0

01200 D0 20 I1=1,750

01300 20 RINDEX(I)=FLOAT(I-1)/10.

01400 TYPE 6 (RINDEXCI)» (DIFCOR(K) s K=(I-1)%10s(I-1
YX1049) )

01500 X I=1+750)

01600 6 FORMAT(1H1/1H0»36Xs 'DIFFRACTION CORRECTION DL
AS A FUNCTION OF S

01700 X “/1HO93X» S’ s7Xr 0400’ 16X9’0.01798Xr’0.027»
01800 1 6X970.03796X9°0.04'96X9’0.05%96X270,067 96Xy
01900 2 ‘04077 96X270.08’+6X9’0.09’/71HO/S0(3XsF4.1»10F
10.3/7))

02000 END




93
00100 SUBROUTINE BES(X9¢JOrJ1)
00200 DIMENSION A(7)+B(7)2C(72)»D(7)2E(7)9F(7)
00300 REAL JOsJ1
00400 DATA A/71.09-.2591.562495E~-2+-4,34008E-4+6.77
A562E-6y
00500 1 -6.679876E-8¢r3.95152E-10/»EB/ .59-6.249998E-2,2
+604145E~-3
00600 2 -5,424265E~-5+6.756882E-7+~5.378753E-9+2.08677
PE-11/»
L 00700 3 C/7.978846E-19-2.31E-69r-4.97466E-2+-2.56824E~
321.11162E-1>»
00800 4 -1 ,769162E~191,.0553E~1/+10/-7.853982E~1+-1.249
919E-1y
00900 S5 -3.5586E-4,7,.089471E~-2,-4,384125E-2,-7.127919
E-2»
F 01000 6 9.883782E-2/9E/7.9788446E-1+4.68E-671.4937E-1>»
i ! 4,61835E-3
i ‘ 01100 7 -2,021039E~-192,761768BE~17-1,460406E-1/+sF/-2.3
{ 96194,
E 01200 8 3.749884E-1:5.085E-4y-1.722273E~196.022188E~-2
f v1.939723E-1»
01300 Q@ -2,126201E-1/
01400 IF(X.6T.3.0) GO 70 10
01500 JO=AC1)+XAXXKC(AC2)EXAXKCACTIHXEXK(AC(4) +XRXK (A
(F)+XXXKk (AL +
01600 X XXXXA(7))))))
01700 JI=XRK(BC(L)+XAXR(B(2)+XXXK(B(3)+XKXX(B(4)+ XXX
X(B(S)+XAXXK(B(6)+
01800 X XXXXE(7)))))))
01900 RETURN
02000 10 FO=(((((C(7)/XTC(E) I/ XF+C(S)))/XHC(A))/X+C(3)) /X
+C(2))/X+C(1)
‘02100 THO=C((((D(Z)/X+D(E) I/ X+D(S) ) /X+D(4) ) /X+D(3)
Y/ X+D(2) )/ X+ '
02200 X D{1)+X
02300 Fi=C((C(E(Z)Y/XYE(S)) ) /XHE(S) I/ XFEC(A) Y /X+E(I))
/X+E(2))/X+E(1)
02400 TH1=(((((F(7)/X+F(8) ) /X4F(S) ) /X+F (4) )/ X+F (3)
Y/ X+F(2))/X+
02500 X FC1)+X 4
02600 JO=FOXCOS(THO)/SART(X)
! 02700 J1=F1XCOS(TH1)/SQRT (X)
| 02800 RETURN
02900 END
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